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Abstract
Flows in the atmospheric boundary layer are turbulent, characterized by a large Reynolds
number, the existence of a roughness sublayer and the absence of awell-defined viscous layer.
Exchanges with the surface are therefore dominated by turbulent fluxes. In numerical models
for atmospheric flows, turbulent fluxes must be specified at the surface; however, surface
fluxes are not known a priori and therefore must be parametrized. Atmospheric flow models,
including global circulation, limited area models, and large-eddy simulation, employ Mon-
in–Obukhov similarity theory (MOST) to parametrize surface fluxes. TheMOST approach is
a semi-empirical formulation that accounts for atmospheric stability effects through univer-
sal stability functions. The stability functions are determined based on limited observations
using simple regression as a function of the non-dimensional stability parameter representing
a ratio of distance from the surface and the Obukhov length scale (Obukhov in Trudy Inst
Theor Geofiz AN SSSR 1:95–115, 1946), z/L . However, simple regression cannot capture
the relationship between governing parameters and surface-layer structure under the wide
range of conditions to which MOST is commonly applied. We therefore develop, train, and
test two machine-learning models, an artificial neural network (ANN) and random forest
(RF), to estimate surface fluxes of momentum, sensible heat, and moisture based on surface
and near-surface observations. To train and test these machine-learning algorithms, we use
several years of observations from the Cabauwmast in the Netherlands and from the National
Oceanic and Atmospheric Administration’s Field Research Division tower in Idaho. The RF
and ANN models outperform MOST. Even when we train the RF and ANN on one set of
data and apply them to the second set, they provide more accurate estimates of all of the
fluxes compared to MOST. Estimates of sensible heat and moisture fluxes are significantly
improved, and model interpretability techniques highlight the logical physical relationships
we expect in surface-layer processes.
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1 Introduction

Flows in the atmospheric boundary layer (ABL) are turbulent, characterized by a large
Reynolds number (Re), the existence of a roughness sublayer, and the absence of a well-
defined viscous layer. The exchange of momentum, heat, and constituents between the land
surface and atmosphere is mediated by the surface layer of an ABL. The surface layer is
commonly considered to span approximately the lower 10% of an ABL in contact with the
land surface. Exchanges between the land surface and the atmosphere through the surface
layer are dominated by turbulent fluxes of momentum, heat, moisture, and other constituents.

At present it is not possible to fully resolve atmospheric flows in numerical models due
to computational constraints. Resolving all turbulent motions in atmospheric flows charac-
terized by Reynolds numbers on the order of 107 to 108 would require Re9/4 or up to 1018

grid points (Rogallo and Moin 1984). Instead, in numerical models of atmospheric flows the
effects of turbulent stresses and fluxes on large-scale motions are parametrized, while turbu-
lent fluxes at the surface must be specified. Since surface fluxes are not known a priori, they
must be parametrized. When the surface heat flux and vertical virtual potential temperature
gradient both vanish, the structure of a neutrally stratified ABL is represented well by a log-
arithmic velocity profile. While identically zero heat flux is rarely observed, mostly during
transition periods between convective (e.g. daytime) and stably stratified (e.g. night-time)
conditions, near-neutral ABLs occur under strong shear (i.e. higher wind) conditions. Due
to diurnal variability and different atmospheric forcings, the ABL structure is commonly
affected by surface fluxes of heat and moisture. Under such conditions, velocity profiles
deviate from a logarithmic structure. Furthermore, baroclinicity due to non-uniform vertical
profiles of horizontal pressure gradient can also result in deviation from a logarithmic profile.

Theoretical underpinnings of the surface exchanges with the atmosphere were laid out by
Monin and Obukhov (1954). They developed a similarity theory linking measurements of
wind speed and temperature at a level near the surface to the friction velocity and surface flux
of sensible heat. Assuming that two relevant length scales, distance from the surface, z, and
Obukhov length, L (Obukhov 1946), account for the effect of a land orwater boundary and for
the competing effects of shear and buoyancy,Monin andObukhov defined a non-dimensional
stability parameter z/L . The deviation from the shear associated with the logarithmic profile
due to the effects of atmospheric stability can then be represented by a universal function that
depends on the stability parameter and that must be determined empirically under stationary
conditions with a flat, homogeneous upwind fetch. In this way a relationship between the
wind shear in a surface layer and the friction velocity can be established. In a similar fashion,
a relationship between virtual potential temperature scale and virtual potential temperature
gradient is established. We can then use these relationships to compute the turbulent stress
and the sensible heat flux at the surface. A similar relationship is extended and applied for
moisture fluxes. Monin– Obukhov similarity theory (MOST) is currently used in virtually all
atmospheric models to provide surface fluxes of momentum, heat, andmoisture (e.g. Beljaars
and Holtslag 1991; Jimenez et al. 2011).

A number of field studies under nearly homogeneous and stationary conditions were
carried out to determine universal stability functions that modify velocity and temperature
profiles under non-neutral conditions. These stability functions are determined as simple

123



Machine Learning for Improving Surface-Layer-Flux Estimates 201

linear and nonlinear regression fits for stably stratified and unstable conditions, respectively.
The general forms of stability functions are commonly labelled Businger–Dyer functions
(Dyer and Hicks 1970; Businger et al 1971; Dyer 1974). However, different regression
parameters are obtained from different field studies. Even when extreme care is taken to
control the quality of the data, the scatter is significant, in particular under stably stratified
conditions. For example, Newman and Klein (2014) analysed surface observations from the
Southern Great Plains site and found that under stably stratified conditions the coefficient of
determination between direct observations of surface friction velocity and MOST estimation
is only 0.5. Furthermore, MOST is based on single-point statistics, which implies that the
local surface-layer eddies are responsible for the total turbulent flux at the surface. In a
review marking 50 years of MOST, Foken (2006) noted that: “A better understanding of
the limitations of the Monin–Obukhov similarity theory under non-ideal conditions depends
upon an exact knowledge of all parameters of the similarity theory”. Hicks et al. (2014)
revisited MOST relationships using observations from an Ocotillo, Texas field study and
pointed to limitations ofMOST related to stably stratified boundary layers and non-stationary
conditions associated with transitional boundary layers. Analysing large-eddy simulations,
Khanna and Brasseur (1997) suggested a non-local dependence of surface fluxes on the
stability parameter, zi/L , accounting for the mixed-layer depth. Recently, Tong and Nguyen
(2015) argued that MOST is an incomplete similarity theory because it does not account for
the effects of non-local interactions on turbulent flux of momentum and heat. Li et al. (2018)
used direct numerical simulations to analyse surface fluxes and demonstrated that eddies
that originate from the outer layer contribute significantly to the heat transport in the surface
layer, an effect not accounted for within MOST. To account for non-local interactions, Tong
and Ding (2020, Ding and Tong 2021) proposed a multi-point MOST, while Salesky and
Anderson (2020) propose extended similarity including a parameter related to large-scale
motions. Sun et al. (2020) proposed a bulk parametrization of momentum flux based on
a hockey-stick transition for weak wind conditions that accounts for the effect of non-local
coherent turbulence eddies. The focus of the presentwork is on development of a surface-layer
parametrization for atmosphericmodels that is not constrained by the assumptions inherent to
MOST nor by single-point statistics. As such, this approach does not represent an alternative
to the recent developments by Tong and Ding (2020), Salesky and Anderson (2020), and Sun
et al. (2020), but complements these developments. The goal is to explore machine-learning
approaches as an alternative to simple regression focusing on the homogeneous, flat-fetch
boundary layers, the conditions under which MOST should perform well.

In practice, MOST stability functions determined under stationary conditions and flat
homogeneous fetch are commonly used evenwhen these conditions are not satisfied. Stiperski
and Calaf (2018) proposed extending surface-layer similarity to more complex flows by
accounting for turbulent stress anisotropy. In studies that followed, Stiperski et al. (2019,
2021) demonstrated that accounting for anisotropy can provide a more general surface-
layer-similarity framework and improve estimates of velocity variances. However, under a
wide range of conditions to which MOST is commonly applied, simple regression based on
single-point measurements does not capture the relationship between governing parameters
and surface-layer structure that, in addition to turbulence stresses, includes fluxes of sensible
heat and moisture. Furthermore, empirically determined stability functions representing the
non-dimensional shear and virtual potential temperature gradient are expressed as a function
of stability parameter z/L so that there is implicit self-correlation because surface friction
velocity and sensible heat flux figure in both stability functions, φm, φh, and the stability
parameter, z/L (Hicks 1978;Klipp andMahrt 2004).Wehave therefore developed amachine-
learning model for an improved surface-layer parametrization using long-term surface-layer
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observations. The ability of a neural network-based machine-learning model to estimate the
Obukhov length and the mixed-layer height was previously demonstrated by Pelliccioni et al.
(1999). Machine-learning models were also developed to estimate the index of refraction
structure parameter, Cn , in a surface layer (Wang and Basu 2016) and develop a better
understanding of the dependence of Cn on environmental parameters (Jellen et al. 2020).

To estimate surface fluxes of momentum, sensible heat, and moisture based on measure-
ments of wind speed, temperature, and humidity as well as surface temperature and soil
moisture, we developed, trained, and tested two machine-learning models. The machine-
learning models are based on the artificial neural network and random forest algorithms.
To train and test these machine-learning algorithms, we used several years of observations
from the Cabauw mast in the Netherlands and from the National Oceanic and Atmospheric
Administration’s Field Research Division tower in Idaho. We use only directly observed
quantities as predictors in machine-learning models.

In what follows we first review MOST, then we describe the data used for machine-
learning-model training and validation, followed by development and testing of twomachine-
learning models based on random forest and neural network algorithms. Finally, we provide
a summary of the results and outline potential further developments.

2 Monin–Obukhov Similarity Theory

Monin–Obukhov similarity theory states that under non-neutrally stratified atmospheric con-
ditions the logarithmic profile is modified as a function of a stability parameter z/L , where
L is the Obukhov length scale defined as (Obukhov 1946):

L = − u3∗
g
T w

′
θ

′
v

, (1)

where g is the acceleration due to gravity, T is the reference temperature, u∗ is the surface
friction velocity, andw

′
θ

′
v is the turbulent sensible heat flux. The non-dimensional wind shear

in the surface layer (i.e. momentum stability function, �M ) can be expressed as:

�M

( z

L

)
= κz

u∗
∂U

∂z
, (2)

where z is the distance from the surface, κ is the von Kármán constant, and U is the wind
speed. The surface friction velocity u∗ is defined as:

u∗ = 4

√(
u ′

w
′
)2 +

(
v

′
w

′
)2

, (3)

where u ′
w

′ and v
′
w

′ are the surface turbulent stress components. Similarly, the non-
dimensional virtual potential temperature gradient in the surface layer (i.e. the virtual potential
temperature stability function, �H ) can be experimentally determined for a virtual potential
temperature profile:

�H

( z

L

)
= κz

θ∗
∂�v

∂z
. (4)
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Here, �v is mean virtual potential temperature and θ∗ is a virtual potential temperature scale
defined as:

θ∗ = −w
′
θ

′
v

u∗
. (5)

The moisture lengths scale, q∗, is:

q∗ = −w
′q ′

u∗
, (6)

where w
′q ′ is the surface moisture flux. An implicit assumption is that the surface friction

velocity, the virtual potential temperature scale, and themoisture scale are constant throughout
the surface layer. Equations 3, 5 and 6 are used to compute three scales based on observations.

In expressions for the non-dimensional shear and non-dimensional virtual potential tem-
perature gradient, κ is the von Kármán constant. The constant is determined under neutrally
stratified conditions when:

�M

( z

L

)
= 1. (7)

After integrating Eq. 2, it follows that:

U1 = u∗
κ

(ln z1 − ln z0). (8)

Here, z0 is the roughness length where U = U0 = 0. Equation 8 represents a logarithmic
wind profile. The wind speed, U1, at the level z1 above the surface and the surface friction
velocity, u∗, are observed quantities. Equation 6 can be rewritten as:

U1 = Aζ − C, (9)

where ζ = ln z1, A = u∗/κ, andC = u∗/κ ln z0. The observations under neutral stratification
are used to determine the von Kármán constant from the slope, A, of the line, while the
roughness length is determined from the offset,C .

For the virtual potential temperature under non-neutral conditions, we can obtain the
following relationship (Paulson 1970):

�v1 − �v0 = θ∗
κ

[
ln

z1
z0T

− ψH

( z1
L

)]
. (10)

Here, z0T is the heat flux roughness length (Owen and Thomson 1963) andψH is the integral
of the stability function �H . The heat flux roughness length can be related to the momentum
roughness length (Zilitinkevich 1995):

z0T = z0 exp

(
−Cz

√
u∗z0

ν

)
. (11)

The non-dimensional constant Cz is commonly set to 0.1, although it may depend on
land-cover characteristics (e.g. Chen et al. 1997; Chen and Zhang 2009), and

√
u∗z0/ν is the

roughness Reynolds number, where ν is the kinematic viscosity.
The surface roughness length depends on the characteristics of the upwind fetch and

land cover. For a flat terrain covered by short grass or low crops, 0.008m ≤ z0 ≤ 0.09m
(Wieriga 1993). Kelly and Jørgensen (2017) showed that the uncertainty in estimation of
surface roughness can be significant even under nearly ideal conditions of flow over flat,
homogeneous terrain (cf. Fig. 1 in Kelly and Jørgensen 2017). For example, the Andreas

123



204 T. McCandless et al.

Fig. 1 Historical distributions of friction velocity, virtual potential temperature scale, andmoisture scale derived
from observations at Idaho (red) and Cabauw (blue) that show different distributions between sites

et al. (2006) estimates of roughness length over sea ice (a relatively consistent surface)
during the Surface Heat Budget of the Arctic Ocean (SHEBA) field study show significant
scatter (cf. Fig. 5 in Andreas et al. 2006). Even for the same value of observed surface friction
velocity the estimated roughness lengths varied two orders of magnitude.

In addition, the universality of the von Kármán constant for different boundary-layer
flows has been questioned (cf. Nagib and Chauhan 2008). Nagib and Chauhan argue that
the value of the von Kármán constant depends on flow geometry (e.g. pipes, channels, or
boundary layers) and the pressure gradient. Based on wind-tunnel measurements of zero
pressure gradient boundary-layer flows they report a value of 0.384 ± 0.005. Similarly,
Andreas et al. (2006) reviewed values of the von Kármán constant obtained from different
atmospheric observations spanning the range from 0.35 to 0.41 for atmospheric flows. Based
on atmospheric surface-layer observations during the SHEBA field study they concluded that
for a weak pressure gradient ABL, the value of the von Kármán constant is 0.387 ± 0.003.
Andreas (2009) presented an argument for a von Kármán constant value of 0.39 and showed
that the stability function would not change the functional form, but only the constants in
these functions would need to be modified. However, at present the twomost commonly used
stability functions determined by Dyer and Hicks (1970) and Businger et al (1971) are based
on different estimates of the von Kármán constant, 0.41 and 0.35, respectively.

Even before universal stability functions can be determined fromobservations at a range of
atmospheric stabilities, significant uncertainties exist in estimation of the roughness length
and the von Kármán constant. These uncertainties compound uncertainty in determining
universal stability functions is discussed by Salesky and Chamecki (2012).

Due to significant differences in the structure of velocity and virtual potential temperature
profiles under convective and stably stratified conditions, the stability functions are estimated
separately for two cases. However, stability functions derived by both Dyer and Hicks (1970)
and Businger et al. (1971) have the same functional form. The functional form of similarity
functions for stably stratified conditions is:

�M

( z

L

)
= 1 + a

z

L
, (12)

and

�H

( z

L

)
= b + c

z

L
. (13)

The functional form of similarity functions for convective conditions is:

�M

( z

L

)
=

(
1 − d

z

L

)p
, (14)
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and

�H

( z

L

)
= g

(
1 − h

z

L

)q
. (15)

The constants [a, b, c, d, p, g, h, q] are [5, 1, 5, 16,−1/4, 1, 16,−1/2] and
[5, 0.74, 5, 15,−1/4, 0.74, 15,−1/2] based on Dyer and Hicks (1970) and Businger
et al. (1971), respectively. Stability functions for moisture have the same form as those for
virtual potential temperature.

The surface friction velocity, u∗, the virtual potential temperature scale, θ∗, and the mois-
ture scale, q∗, are estimated using MOST by integrating Eqs. 2 and 3, and a corresponding
equation for moisture using constants determined byDyer andHicks (1970). These equations
are given in Appendix. Based on the Dyer and Hicks form of stability functions, the turbulent
Prandtl number is implicitly equal to unity.

3 Data

Our focus is on developing a surface-layer parametrization for atmospheric models applica-
ble at a wide range of conditions.While there are high-quality observations from a number of
episodic field studies focused on specific physical processes (e.g. LeMone et al. 2000, Coop-
erativeAtmosphere Surface Exchange Study 97 (CASES-97); Poulos et al. 2002, Cooperative
Atmosphere Surface Exchange Study (CASES-99); Uttal et al. 2002, SHEBA; Lothon et al.
2014, Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST), etc.), we use
observations from two locations that provide quality-controlled long-term observations to
improve overall model skill by developing and test a machine-learning model that can be
compared to MOST.

For this initial development of a machine-learning model for parametrization of surface
fluxes, we use observations from two sites with flat homogeneous fetch to enable comparison
with MOST. Using multiple sites allows us to compare a model trained with one site’s data
and applied to the other. One of the observational sites is the Royal Netherlands Meteoro-
logical Institute (KNMI) Cabauw Experimental Site for Atmospheric Research at Cabauw,
Netherlands (Beljaars and Bosveld 1997), a site that has been used to validate surface-layer
parametrizations and land-surface models since 1972. Cabauw is located in the western part
of the Netherlands at 51.971°N, 4.927°E. The area is generally used for agriculture with
minimal elevation changes within kilometres of the tower and generally covered with low
brush. While the Cabauw observations are available starting from 26 February 2003, here
we use data from 2013 through 2015 to match the three-year record period available from
Idaho. The outgoing longwave radiation, which we convert to skin temperature, is derived
from a measuring device approximately 200 m from the flux tower (Bosveld 2020). This
dataset includes all of the variables needed for analysis at a 10-min temporal resolution.

Our second observational site is at the Idaho National Laboratory (INL) site, Idaho,
USA, and managed by the National Oceanic and Atmospheric Administration (NOAA) Air
Resources Laboratory Field Research Division. The NOAA/INL eddy-covariance flux tower
is located at 43.5959°N and 112.9288°W in a flat area with low (less than 1 m) brush. The
outgoing longwave radiation measurement is collocated at 2 m height with the NOAA/INL
flux tower. All other meteorological measurements are located at a tall tower that is about
900 m to the south-west of this flux tower (Finn et al. 2017). The dataset includes observa-
tions spanning 2015 to 2017. The variables measuredmatch well with the ones fromCabauw,
with a few exceptions. First, the Idaho dataset only includes relative humidity at one level
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(2 m), which limits the moisture scale predictability at Idaho. Second, the Idaho dataset has
slightly different levels for measuring wind speed and temperature (2 m, 10 m, 15 m, and
45 m) compared to Cabauw (2 m, 10 m, 20 m, and 40 m). In the comparison, we match the
15 m reading at Idaho to the 20 m reading at Cabauw and the 45 m reading at Idaho to the
40 m reading at Cabauw. Third, the Idaho dataset measures soil moisture content at 5 cm,
while the Cabauw dataset measures soil moisture content at 3 cm. Additionally, we utilized
measurements of wind velocity, temperature, and water vapour mixing ratio at their highest
resolution, which was 10 min for Cabauw, and at Idaho we averaged 5-min resolution data
to match the 10-min data from Cabauw. Flux measurements at Cabauw were also available
at 10-min resolution, while at Idaho they were available at 30 min.

While the two locations are similar in terms of their horizontal homogeneity of grassland,
they represent clearly different climatologies with different distributions of our target vari-
ables moisture scale, virtual potential temperature scale, and friction velocity, as shown in
Fig. 1. Specifically, the moisture scale has a narrower distribution centred around zero for
the arid Idaho site compared to a wider distribution for the Cabauw site. The Idaho site is
also characterized by larger negative values of virtual potential temperature scales and higher
frequency of larger values of friction velocity. Associated with the different distributions of
target scaling parameters between the two sites are different distributions of atmospheric
stability. We computed the bulk Richardson number (Rib) between the heights of 2 m and
10 m and displayed the number of cases of negative Rib (unstable) versus positive Rib (sta-
ble) conditions. While the Idaho data are characterized as 55% stable and 45% of unstably
stratified conditions, the Cabauw data are characterized substantially higher ratio of stable
to unstable instances, approximately 62.5% to 32.5%.

Figures 2 and 3 depict stability functions for momentum, φm , and heat, φh , respectively,
computed using the data from the Cabauw and Idaho sites. It is clear that there is significant
spread at both sites and potentially bias associated with determination of surface roughness
for momentum and heat transfer as well as the von Kármán constant.

Fig. 2 Two-dimensional histograms of the momentum stability function,�M , for Idaho (a) and Cabauw (b) as
a function of the non-dimensional stability parameter z/L
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Fig. 3 Two-dimensional histograms of sensible heat stability function, �H , for Idaho (a) and Cabauw (b) as
a function of the non-dimensional stability parameter z/L

4 Machine-LearningMethods

We developed two machine-learning models for surface-layer parametrization based on the
random forest (RF) and artificial neural network (ANN) methods. The two algorithms have
different training requirements and they differ in complexity. The RF method requires less
preprocessing and its training process is simpler. The ANN algorithm requires more experi-
ence in machine-learning model development because it includes a wider range of tunable
hyperparameters. However, in comparison with RF-based models, ANN-based models pro-
duce a smoother prediction, and they are usually more compact models. For both model
sets, we trained separate models to predict the friction velocity, virtual potential temperature
scale, and moisture scale at each site. While we manually validated a select subset of model
hyperparameters (settings governing model structure, such as the number of trees in a RF)
configurations based on prior experience with machine-learning training, we did not perform
an exhaustive hyperparameter search. Further incremental performance gains may be possi-
ble for these datasets with additional tuning, but those performance gains could come from
overfitting to the validation set and as a result would not generalize.

4.1 Random Forest

The RF algorithm (Breiman 2001) has seen increased use across a wide range of meteoro-
logical applications in recent years (e.g. Gagne et al. 2017; Herman and Schumacher 2018;
Yuval and O’Gorman 2020), because it provides a good balance of accuracy, robustness, and
interpretability compared with many other machine-learning algorithms. The RF algorithm
consists of an ensemble of classification and regression tree (CART; Breiman 1984) deci-
sion trees that have been diversified by incorporating random subsampling into an otherwise
deterministic and greedy training process.

Classification and regression decision trees consist of decision nodes containing a yes-or-
no question formatted as “Is xn < threshold?” (i.e. “Is temperature < 280 K?”). If yes, the
algorithm proceeds down the left branch, and if no, the algorithm proceeds down the right
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branch. The xn and threshold values are selected by exhaustively testing every combination
of both and picking the one that minimizes the mean-squared error, for our regression RF,
for the training examples at that node. Subsequent nodes in the tree can either be decision
nodes or leaf nodes, where the final prediction from the tree is calculated from the training
examples that fell into that node. For our RF, tree growth is stopped when a minimum
number of examples in a node (2) are reached or a maximum number of leaf nodes (4096)
have been created across all branches in order of the number of examples that proceed down
each branch. A branch with more examples will be grown out before a branch with fewer
examples. Limiting the size of the trees makes each tree less prone to overfitting by reducing
prediction variance and also reduces the storage cost of themodel. Fully growing the decision
trees for the full Cabauw dataset resulted in a model that required multiple gigabytes of disk
storage, whereas limiting leaf nodes resulted in a storage size of 22 MB.

For classification problems, the relative frequency of each class in the node determines
the predicted probability. For regression problems, the mean of output values for the train-
ing examples in a leaf node determines the predicted output. In essence, a decision tree
is a dynamic nearest-neighbours algorithm where the neighbourhood is determined by the
decision thresholds of a particular branching path rather than a fixed distance metric.

The random forest builds on CART by incorporating random sampling into the training
process with the combined goals of increasing tree diversity and reducing training time per
tree. Each tree in the forest is trained on a bootstrap resampled subset of the original training
data in which some examples are duplicated and others are ignored. The candidates for xn
at each node are selected by drawing a random subset of inputs of size square root of the
total number of inputs and evaluating them under the same procedure as CART. The final
prediction from the regression RF is the mean of the predictions from all the trees. Increasing
the number of trees in the forest results in more stable predictions but also requires an
increasing amount of computation, so we chose 100 trees as a reasonable compromise that
has been robust across many problem domains.

Because the RF is a dynamic nearest-neighbours algorithm, it is efficient at interpolating
within the space of the training data. Outside the range of the training data inputs, RF assumes
a constant extrapolation value. As a result, RF will not predict any output values outside the
range of the training distribution and will generally have a smaller prediction variance than
the training output variance. The RF will not produce widely unphysical values even if given
noisy input values, but it will underestimate extremes to a greater degree than other ML
methods. We used the RF implementation from the scikit-learn package (Pedregosa et al
2011). For more information about the theory behind decisions trees and RF, see Hastie et al.
(2009) and James et al. (2021).

4.2 Artificial Neural Network

An ANN is a flexible machine-learning method that can universally approximate smooth
continuous functions (Hornik et al. 1989). Artificial neural networks consist of an input
layer, a series of hidden layers that transforms the input vector into a latent vector, and
an output layer that produces the final prediction. Each hidden layer consists of a matrix of
perceptrons (Rosenblatt 1958; Reed andMarks 1998), or linear regression functions wrapped
with a nonlinear transformation, the activation function. For this project, we used the scaled
exponential linear unit (SELU) activation function (Klambauer et al. 2017),which encourages
the neural network to self-normalize its signal and performed well in prior research on
neural network parametrization (Gagne et al. 2020). The activation functions induce a sparser
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representation of the latent vector, enabling the ANN to model different regimes within the
data. Increasing the number of perceptrons in each hidden layer enables the model to learn a
smoother and more detailed representation of the data at the potential risk of overfitting, so
we chose 128 perceptrons per hidden layer as a reasonable compromise.

Artificial neural networks are trained or optimized through the process of stochastic gra-
dient descent via backpropagation. The model is initialized with small random weights that
are updated by selecting a random mini-batch of data, sending it forward through the model
to generate a prediction, and calculating the prediction error, which is the mean-squared error
for our implementation. The error gradient, or partial derivative of the error with respect to
each model weight, is calculated in reverse through the model since the gradients for the first
hidden layer depend on those for the second hidden layer, and so on. Increasing the number
of hidden layers can reduce the magnitude of the gradient significantly, resulting in noisy
gradients for early layers. Activation functions in the rectified linear unit family, including
SELU, reduce this issue because the positive gradient is constant no matter how large the
input value is. We chose two hidden layers for our model and found that additional hidden
layers did not result in any performance improvements on validation data. The choice of
optimizer determines how the gradient updates the weights by factoring in the learning rate,
a constant multiplier to the gradient that determines the step size of the update. We chose the
Adam optimizer (Kingma and Ba 2014) with a learning rate of 0.0001 because it promotes
fast and stable convergence compared with other optimizer algorithms and has become the
default choice for many neural network problems. The ANN training duration depends on
the size of the mini-batch (128) and the number of epochs, or iterations over the training
data. We found that 20 epochs were sufficient for the training and validation error decrease
to begin levelling off without overfitting (see “Appendix 2”).

Some ANNs require additional regularization constraints to fit their data robustly, espe-
cially if the data are noisy and high-dimensional, but our validation set performance did
not indicate a need for regularization. Unlike decision trees, which include variable selec-
tion throughout the model building process, ANNs will use information from all variables.
However, they will greatly reduce the weights assigned to less relevant inputs, leading to
soft feature selection. The extrapolation pattern of neural networks depends on the choice of
activation function. For SELU, the model extrapolates linearly based on the subset percep-
trons activated by a given input. This extrapolation can increase the model variance but can
also result in increasingly non-physical values the further away new predictions are from the
training distribution. The model used here is built with the Keras–TensorFlow framework
(Chollet 2015), which makes configuration of neural network settings and designs easy and
scalable.

5 Comparing theMachine-Learning Surface-Layer-Parameter
Estimates to Monin–Obukhov Similarity Theory

The predictands that must be estimated using a machine-learning model are surface friction
velocity, u∗, virtual potential temperature scale, θ∗, and moisture scale, q∗. As the first step
in development of machine-learning models for surface-layer parametrization, we need to
determine the common set of predictors for the two observational sites. For effective develop-
ment and best results in developing a reliable machine-learning model, the set of predictors
should be based on consistent observations among different sites. However, the challenge is
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that, in general, observations at different sites are not typically consistent. Frequently, obser-
vations of the same type are not made, or they may be made at different levels with respect
to the ground level or at different frequencies. Surface fluxes of momentum, heat, and mois-
ture can be and are frequently estimated with MOST using measurements of wind velocity,
temperature, and specific humidity at only one level; however, as Panofsky (1963) indicated
and Basu (2019) demonstrated, the Obukhov length, L, and therefore surface turbulent stress
and sensible heat flux can be estimated using measurements of wind and temperature at three
levels. Since our goal is to develop a surface-layer parametrization for atmospheric models
and considering that they can provide prediction of atmospheric variables at multiple levels
in a surface layer, we use observations at three levels above the ground.

The full list of the common set of predictors between Idaho and Cabauw sites appears
in Table 1 with the corresponding height levels for each location. Several measurements
were taken at different heights, at 15 m and 45 m at the Idaho site, while for Cabauw the
measurements were taken at 20 m and 40 m above the ground. Additionally, the soil moisture
and soil temperature were measured at 3 cm at Cabauw and at 5 cm at the Idaho site. For the
purpose of this analysis, we assumed that the data were observed at the same level, but we
would expect some small differences to result from these differences in levels.

We first trained ANNs and RFs for each site independently. We first applied the resulting
machine-learning model to test datasets from the same site the training dataset was derived

Table 1 Observations from Idaho
and Cabauw used as predictors in
machine-learning models. Height
levels at which observations are
made are indicated in the second
and the third column for Idaho
and Cabauw, respectively

Observation (units) Idaho Cabauw

Height level
(m)

Height Level
(m)

Potential temperature (K) 10 10

Potential temperature (K) 15 20

Potential temperature (K) 45 40

Low-level wind speed (ms−1) 10 10

Low-level wind direction (°) 10 10

Mid-level wind speed (ms−1) 15 20

Mid-level wind direction (°) 15 20

Top-level wind speed (ms−1) 45 40

Top-level wind direction (°) 45 40

Relative humidity (%) 2 2

Global horizontal irradiance
(Wm−2)

0 0

Pressure (hPa) 2 2

Solar zenith angle (°) 0 0

Skin Temperature (K) 0 0

Depth level
(cm)

Depth level
(cm)

Top-level soil water content
(gm−3)

5 3

Top-level soil temperature (K) 5 4

Difference between levels

Bulk Richardson number 10–2 m 10–2 m

123



Machine Learning for Improving Surface-Layer-Flux Estimates 211

from. We then applied the models trained on the dataset from the first site to the test datasets
from the second site to evaluate whether a model trained in one climate could perform in
another climate, and thus determine whether the models can be generalized. Finally, we
trained the machine-learning models on a training dataset that merged the Idaho and Cabauw
training datasets. The Cabauw dataset was split into years 2013 to 2014 for training and
year 2015 for testing, which resulted in 34,025 30-min averaged sets of observations in the
training data and 16,553 sets in the testing data. For the Idaho dataset we used years 2016
to 2017 for training and year 2015 for testing, which included 27,787 30-min averaged sets
of observations in the training data and 9,376 sets in the testing data. For consistency, the
observations from the same year were used for testing from both locations. Any instances
where any of the variables were missing were removed from the datasets. The mean absolute
error (MAE) and the square of the Pearson correlation coefficient (R2) were computed for the
machine-learning model predictions and the MOST estimates with respect to observations
of the friction velocity and virtual potential temperature scale. The MAE and R2 results for
the independent testing datasets are shown in Table 2 for the Idaho test dataset and in Table
3 for the Cabauw dataset. These results highlight the generally superior performance of both
the ANN and the RF models over MOST with lower MAEs, and higher R2 when models
are trained and tested using data from the same site. Although forecast skill degrades when
a machine-learning model trained in one climate is applied to the other, the models trained
using the combined dataset consisting of merged Idaho and Cabauw datasets outperform
MOST. In general, there are no major differences in the performance between the ANN and
RF.

These results indicate that the additional data allow both the ANN and the RF model to
learn the representative patterns and perform well. It would be expected that as more sites
and data are added that both models would continue to generalize better to additional areas
with minimal degradation compared to a site-specific model.

The distributions of the machine-learning model predictions compared to the surface flux
variables predicted by MOST demonstrate the differences between the data-driven results
and MOST. Figure 4 includes two-dimensional histograms (warmer colours indicate higher
density of instances than cooler colours) that display the differences between observed and
predicted surface friction velocity for Idaho (top) and Cabauw (bottom) from the RF (left),

Table 2 MAE and R2 of the ANN and RF models trained on each dataset and applied to the Idaho test dataset
using all common variables as predictors

Idaho test dataset (2015)

MAE R2

u∗ (m s−1) θ∗ (K) q∗ (g kg−1) u∗ θ∗ q∗

MOST 0.086 0.128 0.128 0.85 0.29 0.17

ANN trained on Idaho (2016–2017) 0.051 0.087 0.025 0.89 0.62 0.47

ANN trained on Cabauw (2013–2014) 0.087 0.199 0.161 0.87 0.58 0.22

ANN trained on both 0.049 0.081 0.027 0.90 0.66 0.46

RF trained on Idaho (2016–2017) 0.048 0.077 0.027 0.91 0.67 0.41

RF trained on Cabauw (2013–2014) 0.083 0.195 0.193 0.87 0.61 0.20

RF trained on both 0.048 0.078 0.027 0.91 0.67 0.42
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Table 3 MAE and R.2 of the ANN and RF models trained on each dataset and applied to the Cabauw test
dataset using all common variables as predictors

Cabauw test dataset (2015)

MAE R2

u∗ (m s−1) θ∗ (K) q∗ (g kg−1) u∗ θ∗ q∗

MOST 0.038 0.043 0.127 0.92 0.68 0.23

ANN Trained on Idaho (2016–2017) 0.066 0.145 0.116 0.92 0.79 0.45

ANN Trained on Cabauw (2013–2014) 0.024 0.020 0.046 0.96 0.93 0.83

ANN trained on both 0.025 0.022 0.044 0.96 0.92 0.84

RF trained on Idaho (2016–2017) 0.070 0.078 0.118 0.93 0.78 0.57

RF trained on Cabauw (2013–2014) 0.022 0.021 0.043 0.96 0.92 0.84

RF trained on both 0.023 0.022 0.044 0.96 0.91 0.84

Fig. 4 Two-dimensional histograms comparing the observed and predicted friction velocity evaluated using
Idaho (top row) and Cabauw (bottom row) data from the RF (left), ANN (centre), and MOST (right) with
brighter colours indicating more instances and cooler colours indicating fewer instances

ANN (centre), and MOST (right). For the friction velocity predictions, the RF, ANN, and
MOST produce generally similar distributions.

While two-dimensional histograms for the virtual potential temperature scale are also
similar for RF, ANN, and MOST (Fig. 5), MOST histograms for both Idaho and Cabauw
data have wider spread. The moisture scale distributions (Fig. 6) obtained by RF and ANN
models are similar spanning a range of values from -0.5 to 0.8,MOST results in predominantly
positive values. These results indicate that the machine-learning models are better capturing
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Fig. 5 Two-dimensional histograms comparing the observed and predicted virtual potential temperature scale
evaluated using Idaho (top row) and Cabauw (bottom row) data from the RF (left), ANN (centre), and MOST
(right) with brighter colours indicating more instances and cooler colours indicating fewer instances

Fig. 6 Two-dimensional histograms comparing the observed and predicted moisture scale evaluated using
Idaho (top row) and Cabauw (bottom row) data from the RF (left), and ANN (right) with brighter colours
indicating more instances and cooler colours indicating fewer instances
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the real distribution of the virtual potential temperature and moisture scale compared to the
results computed from MOST.

6 Machine-Learning Interpretation

Explainable machine-learning methods can provide insights into what inputs a particular
machine-learningmodel favours andhowchanges in those inputs affect themodel predictions.
Here,we perform and evaluate twomachine-learning interpretability techniques: permutation
feature importance and partial dependence plots (McGovern et al. 2019) for the dataset from
Sect. 4 that utilizes all commonpredictorswith 10-min averagedata. Thepredictor importance
plots, Fig. 7 for Idaho data and Fig. 8 for Cabauw data, show the relative importance of each of
the predictors by determining the increase inmean-squared error after permuting the values of
each input among all examples and sending the permuted data through themodel. For friction
velocity the most important RF predictors are wind speeds at different levels encoding the
level of shear followed by the bulk Richardson number, which encodes atmospheric stability.
The ANN prefers the top-level potential temperature over bulk Richardson number for its
indication of stability. For both themoisture and the virtual potential temperature scale, global
horizontal irradiance (GHI) is the most important predictor for RF as it encodes the diurnal
cycle, and therefore, indirectly the stability. A more direct measure of stability is the bulk
Richardson number, the second most important predictor for these scales. The ANN again
prefers the direct measures of both skin temperature and temperatures at different heights
for its estimates of temperature and moisture scale. The next most important predictors for
the moisture scale capture the heat and moisture content at and near the surface, which is

Fig. 7 Predictor importance rankings for the RF model on the Idaho dataset utilizing all common variables and
the 10-min average fluxes
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Fig. 8 Predictor importance rankings for the RF model on the Cabauw dataset utilizing all common variables
and the 10-min average fluxes

expected given that the moisture scale quantifies the moisture flux from the surface of the
earth to the surface layer of the atmosphere. In addition to GHI and the bulk Richardson
number, relative humidity has a significant impact on the virtual potential temperature scale
for the Idaho dataset, while solar zenith angle, which encodes seasonality, has a significant
impact for the Cabauw dataset.

In addition to the predictor importance, we also analysed the partial dependence of pre-
dictors based on the Idaho and Cabauw data for both RF and ANN models. The partial
dependence plots are shown for all common predictors for friction velocity (Figs. 9 and
10), virtual potential temperature scale (Figs. 11 and 12), and moisture scale (Figs. 13 and
14). Partial dependence plots illustrate the marginal effect a predictor has on the predicted
outputs from a machine-learning model (Friedman 2001). The partial dependence plots hold
a predictor variable constant at the low end of the range of the data and apply the trained
machine-learning model to make a prediction. The average prediction of the predictand is
then plotted against the predictor variable value that was held constant. Then, the predictor
value is increased systematically while making predictions with the machine-learningmodel.
For example, for the mid-level wind speed the value is given at 2.0 m s−1 and a prediction
is made for all instances in the test data. Then the value is increased in ten consistent incre-
ments up to 10 m s−1 to show how the predicted variables (friction velocity, virtual potential
temperature scale, and moisture scale) change as the mid-level wind speed changes.

The same model applied to the Idaho and Cabauw data produces similar partial depen-
dence results. However, two machine-learning models yield significantly different partial
dependences. These differences can be attributed to how the machine-learning algorithms
handle correlated input fields and how they interpolate and extrapolate differently. In general,
the RF is more likely to select variables with stronger signals and ignore others, while neural
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Fig. 9 Predictor partial dependence plots for the RF friction velocity predictions on the Idaho dataset utilizing
all common variables and the 10-min average fluxes

networks provide similar weights to correlated variables that contain the same signal. The
RF approach also shows flat dependence outside the range of the training data, while neural
networks show a linear relationship expanding past the limits of the bulk of the training data.

Similar to the predictor importance analysis, the partial dependence results also high-
light several physical behaviours that are expected given our knowledge of surface layer
processes. The partial dependence analysis for friction velocity based on ANN and RF used
on both datasets (Idaho, Fig. 9; Cabauw, Fig. 10) displays very different dependence on
virtual potential temperature measurements. While the RF model estimates do not depend
on the virtual potential temperature, the ANN model estimates exhibit linear dependence.
Both machine-learning models display an expected positive increase for the low-level wind
speed. However, ANN has a linear dependence, while the RF dependence is nonlinear. When
the ANN model is used, the friction velocity also decreases as the bulk Richardson number
increases, indicating that, as expected, stronger stability is associatedwithweakermomentum
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Fig. 10 Predictor partial dependence plots for the RF friction velocity predictions on the Cabauw dataset
utilizing all common variables and the 10-min average fluxes

fluxes. However, due to an implicit classification, the RF model displays stepwise behaviour
as the bulk Richardson changes sign, indicating transition from convective to stably stratified
conditions. The virtual potential temperature scale partial dependence plots (Figs. 11 and 12)
show that there is a strong negative dependence on GHI and a strong positive dependence for
the ANN model on wind speeds and the lowest level virtual potential temperature. In con-
trast, for the RF model, the virtual potential temperature scale exhibits weak dependence on
the wind speed and virtual potential temperature. It also exhibits positive linearly decreasing
dependence for the ANN model. For the RF model, the virtual potential temperature scale
shows significant positive and nearly stepwise dependence on a range of bulk Richardson
number values close to zero, while it levels off for larger values corresponding to the stronger
atmospheric stability. The moisture scale partial dependence plots (Figs. 13 and 14) show
that there is a strong positive linear relationship with GHI and a negative linear dependence
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Fig. 11 Predictor partial dependence plots for the RF virtual potential temperature scale predictions on the
Idaho dataset utilizing all common variables and the 10-min average fluxes

on the bulk Richardson number. It also indicates a weak dependence on calm to very light
low-level wind speeds.

The analysis of the partial dependence of predictors demonstrates that the wind speed,
i.e. wind shear, is the primary predictor controlling momentum exchange with the surface
and that atmospheric stability is secondary. For heat and moisture exchanges, atmospheric
stability encoded through GHI and the bulk Richardson number is the primary predictor,
while the direct effect of wind speed or shear is a relatively distant second. Thus, the RF
model displays an ability to effectively separate different stability conditions into implicit
regimes as it grows regression trees.

The turbulent eddy structure of convective and stably stratified ABLs differs significantly
due to buoyancy effects. Under unstable, convective conditions, the boundary layer fills with
convective cells or helical rolls, or a combination thereof. In contrast, under stably stratified
conditions, the boundary layer is dominated by a broader spectrum of shear production of
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Fig. 12 Predictor partial dependence plots for the RF virtual potential temperature scale predictions on the
Cabauw dataset utilizing all common variables and the 10-min average fluxes

turbulence kinetic energy. Therefore, surface exchanges differ significantly between these
regimes as can be seen from the different forms of stability functions for convective and
stably stratified conditions. To analyse the ability of the RF separately for each of these con-
ditions, we divided the results into these two stability regimes based on the bulk Richardson
number: stably stratified when the bulk Richardson number is positive or unstable when the
bulk Richardson number is negative. For the friction velocity, there was minimal difference
between the stability regimes, which is a consequence of its primary dependence on the
wind speed, i.e. wind shear, and significantly less pronounced dependence on the stability
of the atmosphere, and therefore, results are not shown here. For the moisture scale and vir-
tual potential temperature scale, the RF produces substantially better results in the unstable
regime compared to the stable regime, which is illustrated in Fig. 15 tested using the Idaho
dataset and in Fig. 16 tested using the Cabauw dataset. For the virtual potential temperature
scale tested on Idaho data, the value of R2 for the stable regime is 0.43, while it is 0.42
for the unstable regime. Similarly, for the moisture scale analysis, the value of R2 for the
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Fig. 13 Predictor partial dependence plots for the RF moisture scale predictions on the Idaho dataset utilizing
all common variables and the 10-min average fluxes

stable regime is 0.249 and for the unstable regime is higher at 0.318. For the virtual potential
temperature scale test on Cabauw data, the value of R2 for the stable regime is 0.72, while it
is much higher at 0.85 for the unstable regime. Similarly, for the moisture scale analysis, the
value of R2 for the stable regime is 0.703 and for the unstable regime is also much higher at
0.854. This analysis provides evidence that themachine-learningmodels have better ability to
estimate the surface fluxes in the unstable regime. Similar conclusions can bemade analysing
ANN model prediction based on stability conditions. This agrees with the previously stated
behaviour ofMOST, which also struggles with stably stratified conditions (Hicks et al. 2014).

The datasets analysed in the current study are available from the corresponding author on
reasonable request, and the source code used in analysis is available at https://github.com/
NCAR/mlsurfacelayer.
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Fig. 14 Predictor partial dependence plots for the RFmoisture scale predictions on the Cabauw dataset utilizing
all common variables and the 10-min average fluxes

7 Conclusions and FutureWork

Monin–Obukhov similarity theory is a semi-empirical theory relating wind and virtual poten-
tial temperature profiles to surface fluxes in ABLs, and it commonly provides lower boundary
conditions in atmospheric flowmodels. AlthoughMOST is based on the assumptions of hor-
izontal homogeneity and stationarity, it is used over a wide range of atmospheric conditions.
Recent proposals based on theoretical considerations, analysis of observations, and high-
resolution simulations could extend MOST to a wider range of conditions. In this study we
presented a complementary approach based on applying machine learning. We have shown
that both RF and ANN machine-learning models have the potential to improve upon tradi-
tional similarity theory model, i.e. MOST. The advantage of the machine-learning approach
is that, given appropriate training data, it can be extended to non-homogeneous and non-
stationary conditions, since as recently stated by Hicks and Baldocchi (2020), “The matter
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Fig. 15 Evaluation of results for the random forest on the Idaho dataset for the virtual potential temperature
scale (top) and moisture scale (bottom) for stable conditions (left) and unstable conditions (right). The RF
model performs better in the unstable cases than the stable cases

of fluxes over complex terrain remains unanswered”. We have also shown that the machine-
learning approaches have the ability to generalize well as highlighted by improved accuracy
over MOST even when trained for one site and applied to another. The challenge is that a
generalizable machine-learning model requires a collection of long-term, quality-controlled,
complete, and consistent observations at diverse locations.While there are a number of excel-
lent episodic field studies focused on specific processes, they do not provide sufficiently long
records required for effective training of machine-learning models capable of capturing sea-
sonal variability. Long-term observational networks such as AmeriFlux (Novick et al. 2018)
or FLUXNET (Pastorello et al. 2020) focused on measurement of surface fluxes of CO2,
methane, water, and energy may not include measurements of all the variables used to train
machine-learning models in this study. Furthermore, the variables required to estimate sur-
face fluxes in numerical weather prediction, such as skin temperature, are frequently not
observed. The sites with sufficient data measured consistently are limited and even for the
two sites that were used in this study, the differences in variables measured at the two sites
have limited some of the analysis. For instance, it would have been beneficial to have all
the measurements at the same levels with respect to the ground as well as measurements
of relative humidity at multiple levels in the Idaho dataset. Furthermore, it is possible that
using derived or estimated quantities, rather than only directly observed quantities, may be
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Fig. 16 Evaluation of results for the random forest on the Cabauw dataset for the temperature scale (top) and
moisture scale (bottom) for stable conditions (left) and unstable conditions (right). The RF model performs
better in the unstable cases than the stable cases

beneficial; however, this can also introduce additional uncertainties and errors. Extending the
applicability of machine-learning models for surface parametrization to general topography
and land use conditions in future studies would require determining the minimum set of
required observations. Such a study was beyond current scope and it will be pursued in the
future.

Model interpretability allows us to better understand the differences between the RF and
ANN approaches at the two sites. The interpretability results show logical relationships
among the predictors and surface friction velocity, virtual potential temperature scale, and
moisture scale that align with our understanding of surface-layer processes. The results
differ by stability (as determined by bulk Richardson number), indicating where MOST and
machine-learning techniques (as applied here) have their strengths and weaknesses.

Ultimately, we can build machine-learning models to adapt to physics-based parametriza-
tions implemented in a specific atmospheric model, such as the Weather Research and
Forecasting (WRF)model. However, we should not be constrained by idiosyncrasies of a spe-
cific model’s design. For example, implementing a machine-learning model for surface-layer
parametrization inWRF does not guarantee that the benefits of improved surface flux estima-
tion will affect the prediction of ABL structure. Boundary-layer parametrizations in theWRF
model receive surface fluxes through the land-surface model, which relies on MOST. This
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means that in order to benefit from the improved estimation of surface fluxes, the entire chain
of parametrizations from land surface, through surface layer, to boundary-layer parametriza-
tion, would have to be modified to be internally consistent with the new parameterization. If
atmospheric models were rewritten to take advantage of such machine-learning surface-layer
approaches in a consistent manner, we would expect improvement in model flux predictions.
We foresee future developments to improve the implementation of the machine-learning-
model framework for surface-layer parametrization in numerical weather prediction and
climate models that do not depend on the assumptions of MOST and are consistent across
all the parametrizations.
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Appendix 1

We compute the surface friction velocity, virtual potential temperature scale, and moisture
scale based on MOST using Dyer and Hicks (1970) stability functions.

The value of the von Kármán constant they used was κ = 0.41. After integrating Eq. 2,
the wind speed difference between two levels, z1 and z0 for stably stratified boundary layers
is

U1 −U0 = u∗
κ

[
ln
z1
z0

+ 5
z1
L

]
, (16)

while, for convective boundary layers, it is

U1 −U0 = u∗
κ

[
ln
z1
z0

− 2ln

(
1 + x

2

)
− ln

(
1 + x2

2

)
+ 2 tan−1 x − π

2

]
, (17)

where

x =
(
1 − 16

z1
L

) 1
4
. (18)

For difference in virtual potential temperature at two levels we can obtain similar rela-
tionships for stably stratified conditions,

�v1 − �v0 = θ∗
κ

[
ln

z1
z0T

+ 5
z1
L

]
, (19)
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and for unstable conditions,

�v1 − �v0 = θ∗
κ

[
ln

z1
z0T

− 2ln

(
1 + x2

2

)]
. (20)

It should be pointed out that closing the surface energy budget under nearly ideal conditions
characterized by stationarity and horizontal homogeneity remains an open problem. Sun et al.
(2020) argued that the work by vertical density fluxes must be accounted for to close the
budget, while in a recent review, Mauder et al. (2020) identify sub-mesoscale transport as
the reason for non-closure.

Finally, the expression for the moisture mixing ratio difference has the same form as the
one for virtual potential temperature. Therefore, for the stably stratified boundary layer the
difference in moisture mixing ratio at two levels in a surface layer can be estimated using the
following equation:

q1 − q0 = q∗
κ

[
ln

z1
z0

− 5
z1
L

]
, (21)

while for the convective ABL the difference is

q1 − q0 = q∗
κ

[
ln

z1
z0

− 2 ln

(
1 + x2

2

)]
. (22)

Equations 16, 17, 18, 19, 20, 21 and 22 are used to compute surface friction velocity, u∗,
virtual temperature scale, θ∗, and moisture scale, q∗, under stably stratified and convective
conditions.

Appendix 2

We trained the ANN model using 20 epochs. Figure 17 depicts the training and validation
loss functions mean-square error (MSE) for the friction velocity, the temperature scale, and
the moisture scale. The loss functions for all three scales level off after 20 epochs. There is a

Fig. 17 The training (blue) and validation loss function (red) MSE for the friction velocity (left panel), the
temperature scale (middle panel), and the moisture scale (right panel)
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potential for further slight performance gains with longer training, but we do not expect the
conclusions of the evaluation or interpretation to change significantly.
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